Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros

Base de dados
Tópicos
Tipo de documento
Intervalo de ano
1.
Front Cell Infect Microbiol ; 13: 1139998, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2301324

RESUMO

Background: The coronavirus disease 2019 (COVID-19) has been spreading astonishingly and caused catastrophic losses worldwide. The high mortality of severe COVID-19 patients is an serious problem that needs to be solved urgently. However, the biomarkers and fundamental pathological mechanisms of severe COVID-19 are poorly understood. The aims of this study was to explore key genes related to inflammasome in severe COVID-19 and their potential molecular mechanisms using random forest and artificial neural network modeling. Methods: Differentially expressed genes (DEGs) in severe COVID-19 were screened from GSE151764 and GSE183533 via comprehensive transcriptome Meta-analysis. Protein-protein interaction (PPI) networks and functional analyses were conducted to identify molecular mechanisms related to DEGs or DEGs associated with inflammasome (IADEGs), respectively. Five the most important IADEGs in severe COVID-19 were explored using random forest. Then, we put these five IADEGs into an artificial neural network to construct a novel diagnostic model for severe COVID-19 and verified its diagnostic efficacy in GSE205099. Results: Using combining P value < 0.05, we obtained 192 DEGs, 40 of which are IADEGs. The GO enrichment analysis results indicated that 192 DEGs were mainly involved in T cell activation, MHC protein complex and immune receptor activity. The KEGG enrichment analysis results indicated that 192 GEGs were mainly involved in Th17 cell differentiation, IL-17 signaling pathway, mTOR signaling pathway and NOD-like receptor signaling pathway. In addition, the top GO terms of 40 IADEGs were involved in T cell activation, immune response-activating signal transduction, external side of plasma membrane and phosphatase binding. The KEGG enrichment analysis results indicated that IADEGs were mainly involved in FoxO signaling pathway, Toll-like receptor, JAK-STAT signaling pathway and Apoptosis. Then, five important IADEGs (AXL, MKI67, CDKN3, BCL2 and PTGS2) for severe COVID-19 were screened by random forest analysis. By building an artificial neural network model, we found that the AUC values of 5 important IADEGs were 0.972 and 0.844 in the train group (GSE151764 and GSE183533) and test group (GSE205099), respectively. Conclusion: The five genes related to inflammasome, including AXL, MKI67, CDKN3, BCL2 and PTGS2, are important for severe COVID-19 patients, and these molecules are related to the activation of NLRP3 inflammasome. Furthermore, AXL, MKI67, CDKN3, BCL2 and PTGS2 as a marker combination could be used as potential markers to identify severe COVID-19 patients.


Assuntos
COVID-19 , Inflamassomos , Humanos , Inflamassomos/genética , Ciclo-Oxigenase 2 , Algoritmo Florestas Aleatórias , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Proteínas Proto-Oncogênicas c-bcl-2
2.
J Med Virol ; 93(2): 741-754, 2021 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1196488

RESUMO

Coronaviruses (CoVs) are nonsegmented, single-stranded, positive-sense RNA viruses highly pathogenic to humans. Some CoVs are known to cause respiratory and intestinal diseases, posing a threat to the global public health. Against this backdrop, it is of critical importance to develop safe and effective vaccines against these CoVs. This review discusses human vaccine candidates in any stage of development and explores the viral characteristics, molecular epidemiology, and immunology associated with CoV vaccine development. At present, there are many obstacles and challenges to vaccine research and development, including the lack of knowledge about virus transmission, pathogenesis, and immune response, absence of the most appropriate animal models.


Assuntos
Vacinas contra COVID-19/biossíntese , COVID-19/prevenção & controle , Infecções por Coronavirus/prevenção & controle , Síndrome Respiratória Aguda Grave/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , COVID-19/imunologia , COVID-19/virologia , Camelus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Cricetulus , Modelos Animais de Doenças , Humanos , Macaca mulatta , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Vacinas de Subunidades , Vacinas Sintéticas/biossíntese , Vacinas de Partículas Semelhantes a Vírus/biossíntese
3.
J Med Virol ; 92(4): 424-432, 2020 04.
Artigo em Inglês | MEDLINE | ID: covidwho-827679

RESUMO

Coronaviruses (CoVs) are by far the largest group of known positive-sense RNA viruses having an extensive range of natural hosts. In the past few decades, newly evolved Coronaviruses have posed a global threat to public health. The immune response is essential to control and eliminate CoV infections, however, maladjusted immune responses may result in immunopathology and impaired pulmonary gas exchange. Gaining a deeper understanding of the interaction between Coronaviruses and the innate immune systems of the hosts may shed light on the development and persistence of inflammation in the lungs and hopefully can reduce the risk of lung inflammation caused by CoVs. In this review, we provide an update on CoV infections and relevant diseases, particularly the host defense against CoV-induced inflammation of lung tissue, as well as the role of the innate immune system in the pathogenesis and clinical treatment.


Assuntos
Infecções por Coronavirus/imunologia , Coronavirus/imunologia , Imunidade Adaptativa , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Linfócitos B/imunologia , Coronavirus/classificação , Coronavirus/fisiologia , Coronavirus/ultraestrutura , Infecções por Coronavirus/patologia , Células Dendríticas/imunologia , Humanos , Imunidade Inata , Inflamação , Pulmão/imunologia , Pulmão/patologia , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA